Neutrophil adhesion and activation under flow.

نویسندگان

  • Alexander Zarbock
  • Klaus Ley
چکیده

Neutrophil recruitment into inflamed tissue in response to injury or infection is tightly regulated. Reduced neutrophil recruitment can result in a reduced ability to fight invading microorganisms. During inflammation, neutrophils roll along the endothelial wall of postcapillary venules and integrate inflammatory signals. Neutrophil activation by selectins and chemokines regulates integrin adhesiveness. Binding of activated integrins to their counter-receptors on endothelial cells induces neutrophil arrest and firm adhesion. Adherent neutrophils can be further activated to undergo cytoskeletal rearrangement, crawling, transmigration, superoxide production, and respiratory burst. Signaling through G-protein-coupled receptors, selectin ligands, Fc receptors and outside-in signaling through integrins are all involved in neutrophil activation, but their interplay in the multistep process of recruitment is only beginning to emerge. This review provides an overview of signaling in rolling and adherent neutrophils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neutrophil adhesion to fibrinogen and fibrin under flow conditions is diminished by activation and L-selectin shedding.

The adhesion of neutrophils (polymorphonuclear leukocytes [PMNs]) to immobilized fibrinogen/fibrin is mediated by beta2-integrins. However, the influence of physiologic flow conditions on neutrophil adhesion to these surfaces is poorly defined. In this report, the effect of flow and neutrophil activation on adhesion to immobilized fibrinogen and fibrin was examined. For the evaluation of (the d...

متن کامل

Vascular mimetics based on microfluidics for imaging the leukocyte--endothelial inflammatory response.

We describe the development, validation, and application of a novel PDMS-based microfluidic device for imaging leukocyte interaction with a biological substrate at defined shear force employing a parallel plate geometry that optimizes experimental throughput while decreasing reagent consumption. The device is vacuum bonded above a standard 6-well tissue culture plate that accommodates a monolay...

متن کامل

Neutrophil-platelet adhesion: relative roles of platelet P-selectin and neutrophil beta2 (DC18) integrins.

Neutrophils and platelets interact both physically and metabolically during inflammation and thrombosis, but the mechanisms responsible for their adhesion remain incompletely understood. Neutrophil-platelet adhesion was measured after specific stimulation of neutrophils, platelets, or both and quantified by flow cytometry. Specific stimulation of either the neutrophil or the platelet led to a m...

متن کامل

Novel insights into the inhibitory effects of Galectin-1 on neutrophil recruitment under flow.

Galectin-1 (Gal-1) is a beta-galactoside-binding protein endowed with anti-inflammatory properties. The purpose of this study was to investigate the effects of endogenous and exogenous Gal-1 on neutrophil recruitment onto TNF-treated endothelium. The effect of human recombinant (hr)Gal-1 on markers of neutrophil activation (CD11b expression, P-selectin glycoprotein ligand 1, and L-selectin shed...

متن کامل

Protein kinase C-θ is required for murine neutrophil recruitment and adhesion strengthening under flow.

Protein kinase C (PKC)-θ is involved in T cell activation via regulating the avidity of the β(2) integrin LFA-1 in the immunological synapse. LFA-1 also mediates leukocyte adhesion. To investigate the role of PKC-θ in neutrophil adhesion, we performed intravital microscopy in cremaster venules of mice reconstituted with bone marrow from LysM-GFP(+) (wild-type [WT]) and PKC-θ gene-deficient (Prk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Microcirculation

دوره 16 1  شماره 

صفحات  -

تاریخ انتشار 2009